Rapid activation of dormant presynaptic terminals by phorbol esters.
نویسندگان
چکیده
Presynaptic stimulation stochastically recruits transmission according to the release probability (P(r)) of synapses. The majority of central synapses have relatively low P(r), which includes synapses that are completely quiescent presynaptically. The presence of presynaptically dormant versus active terminals presumably increases synaptic malleability when conditions demand synaptic strengthening or weakening, perhaps by triggering second messenger signals. However, whether modulator-mediated potentiation involves recruitment of transmission from dormant terminals remains unclear. Here, by combining electrophysiological and fluorescence imaging approaches, we uncovered rapid presynaptic awakening by select synaptic modulators. A phorbol ester phorbol 12,13-dibutyrate (PDBu) (a diacylglycerol analog), but not forskolin (an adenylyl cyclase activator) or elevated extracellular calcium, recruited neurotransmission from presynaptically dormant synapses. This effect was not dependent on protein kinase C activation. After PDBu-induced awakening, these previously dormant terminals had a synaptic P(r) spectrum similar to basally active synapses naive to PDBu treatment. Dormant terminals did not seem to have properties of nascent or immature synapses, judged by NR2B NMDAR (NMDA receptor) receptor subunit contribution after PDBu-stimulated awakening. Strikingly, synapses rendered inactive by prolonged depolarization, unlike basally dormant synapses, were not awakened by PDBu. These results suggest that the initial release competence of synapses can dictate the acute response to second messenger modulation, and the results suggest multiple pathways to presynaptic dormancy and awakening.
منابع مشابه
Posttetanic potentiation critically depends on an enhanced Ca(2+) sensitivity of vesicle fusion mediated by presynaptic PKC.
Activity-dependent enhancement of transmitter release is a common form of presynaptic plasticity, but the underlying signaling mechanisms have remained largely unknown, perhaps because of the inaccessibility of most CNS nerve terminals. Here we investigated the signaling steps that underlie posttetanic potentiation (PTP), a form of presynaptic plasticity found at many CNS synapses. Direct whole...
متن کاملRapid synaptic remodeling by protein kinase C: reciprocal translocation of NMDA receptors and calcium/calmodulin-dependent kinase II.
In contrast to the rapid regulation of AMPA receptors, previous evidence has supported the idea that the synaptic density of NMDA-type glutamate receptors is fairly static, modulated only over a long time scale in a homeostatic manner. We report here that selective activation of protein kinase C (PKC) with phorbol esters induces a rapid dispersal of NMDA receptors from synaptic to extrasynaptic...
متن کاملDifferential Requirement for Protein Synthesis in Presynaptic Unmuting and Muting in Hippocampal Glutamate Terminals
Synaptic function and plasticity are crucial for information processing within the nervous system. In glutamatergic hippocampal neurons, presynaptic function is silenced, or muted, after strong or prolonged depolarization. This muting is neuroprotective, but the underlying mechanisms responsible for muting and its reversal, unmuting, remain to be clarified. Using cultured rat hippocampal neuron...
متن کاملPresynaptic mechanism for phorbol ester-induced synaptic potentiation.
Phorbol ester facilitates transmitter release at a variety of synapses, and the phorbol ester-induced synaptic potentiation (PESP) is a model for presynaptic facilitation. To address the mechanism underlying PESP, we have made paired whole-cell recordings from the giant presynaptic terminal, the calyx of Held, and its postsynaptic target in the medial nucleus of the trapezoid body in rat brains...
متن کاملPostsynaptic Neuroligin1 regulates presynaptic maturation.
Presynaptic nerve terminals pass through distinct stages of maturation after their initial assembly. Here we show that the postsynaptic cell adhesion molecule Neuroligin1 regulates key steps of presynaptic maturation. Presynaptic terminals from Neuroligin1-knockout mice remain structurally and functionally immature with respect to active zone stability and synaptic vesicle pool size, as analyze...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 30 شماره
صفحات -
تاریخ انتشار 2010